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Abstract
This paper introduces a general framework for estimating variance components in the
linear mixed models via general unbiased estimating equations, which include some
well-used estimators such as the restricted maximum likelihood estimator. We derive
the asymptotic covariance matrices and second-order biases under general estimating
equations without assuming the normality of the underlying distributions and identify
a class of second-order unbiased estimators of variance components. It is also shown
that the asymptotic covariance matrices and second-order biases do not depend on
whether the regression coefficients are estimated by the generalized or ordinary least
squares methods. We carry out numerical studies to check the performance of the
proposed methods based on typical linear mixed models.
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1 Introduction

Linear mixed models are widely used in a variety of scientific areas such as small
area estimation (Rao & Molina, 2015), longitudinal data analysis (Verbeke & Molen-
berghs, 2006) and meta-analysis (Boreinstein et al., 2009), and estimation of variance
components play an essential role in fitting the models. Estimation of variance compo-
nents has a long history, and various methods have been suggested in the literature. For
example, the analysis of variance estimation (ANOVA), the minimum norm quadratic
unbiased estimation (MINQUE), the maximum likelihood estimation (ML), and the
restricted maximum likelihood estimation (REML) are well-knownmethods. See Rao
and Kleffe (1988) and Searle et al. (1992) for the details.

This paper is motivated by the derivation of the restricted maximum likelihood
estimator. In the linear mixed models, the ML estimator of variance components ψ is

the solution of the likelihood equation S(ψ,̂β
G
) = 0where S(·, ·) is the score function

and ̂β
G
is the generalized least squares (GLS) estimator of regression coefficients β.

Although E{S(ψ,β)} = 0 because S(ψ,β) is the score function, after substituting

the estimator̂β
G
we have E{S(ψ,̂β

G
)} = h(ψ), which is not zero. Despite S(ψ,̂β

G
)

is asymptotically unbiased, the bias is not negligible under moderate sample sizes,
which may lead to undesirable estimation performance. To overcome the issue, the

corrected equation is S(ψ,̂β
G
)−h(ψ) = 0, and the solution of the equation gives the

REML estimator, which is known to have better performance than the ML estimator.
As noted later, the estimating equation is still valid without normality as long as some
standard moment assumptions are met.

In this paper, we extend the idea of the unbiased estimating equations to more
general situations, where S(·, ·) is not necessarily the score function and the underly-
ing distribution is not necessarily normal. We suggest the general class of estimating
equations for estimating parameters in covariance matrices of random effects and
error terms without assuming the normality. This class includes the REML estimator
and the Fay–Herriot estimator (Fay & Herriot, 1979), and the Prasad–Rao estima-
tor (Prasad & Rao, 1990), which have widely used in the small area estimation. We
first provide unified formulas of the asymptotic covariance matrices and second-order
biases without assuming the normality. The resulting important observation is that the
asymptotic covariance matrices and second-order biases do not depend on whether
the regression coefficients are estimated by the generalized or ordinary least squares
methods, suggesting constructing a simpler estimating equation by using the ordinary
least squares estimator. Moreover, owing to the explicit formula for the second-order
bias, we derive conditions to ensure that the resulting estimator is second-order unbi-
asedwithout normality assumption. This is themain contribution of this work since the
detailed derivation of the second-order asymptotic properties is quite tricky. We also
apply the general theory to two important classes of linear mixed models, Fay–Herriot
(Fay&Herriot, 1979) and nested error regression (Battese et al., 1988)models, and the
numerical performance of the resulting estimators is investigated through simulation
studies.
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In this paper, (V )ab and (V )ab denote the (a, b)-th element of matrix V and the
inverseV−1. Letting ∂a = ∂/∂ψa forψ = (ψ1, . . . , ψk)

�, we use the simple notations
V (a) = ∂aV and V (ab) = ∂a∂bV for a, b = 1, . . . , k.

This paper is organized as follows. The general unbiased estimating equations are
introduced in Sect. 2 with the second-order biases and asymptotic covariance matrices
of the resulting estimators. Some specific estimators and their asymptotic properties
are given in Sect. 3. A numerical investigation is given in Sect. 4, and all the proofs
are given in the Appendix.

2 General estimating equations for variance components

2.1 Settings and restrictedmaximum likelihood estimator

Consider the linear mixed model

y = Xβ + Zv + ε,

where y is an observable N -variate vector, β is a p-variate vector of unknown regres-
sion coefficients, and X is an N × p known matrix of covariates, and Z is an N × m
design matrix. Here, v is a vector of random effects, and ε is a vector of sampling
errors. It is only assumed that v and ε are mutually independent and distributed as
E(v) = 0, Cov (v) = Rv(ψ) = Rv , E(ε) = 0 and Cov (ε) = Re(ψ) = Re, where
ψ = (ψ1, . . . , ψk)

� is a vector of unknown parameters including variance compo-
nents. Also, the fourth moments are described as E[{(R−1/2

e ε)i }4] = Ke + 3 and
E[{(R−1/2

v v)i }4] = Kv + 3, where (a)i is the i-th element of vector a, and A1/2

is the symmetric root matrix of matrix A. Then, E( y) = Xβ and Cov ( y) = � =
Re(ψ) + ZRv(ψ)Z�.

Under the normality, the maximum likelihood estimator of ψ is the solution of the
equations:

( y − X̂β
G
)��−1�(a)�

−1( y − X̂β
G
)−tr (�−1�(a)) = 0, a = 1, . . . , k,

where ̂β
G = (X��−1X)−1X��−1 y is the GLS estimator. The above estimating

equations are approximately unbiased under large N , but the bias is not necessarily
negligible under moderate N , leading to bias in the resulting estimator of ψ . As
a solution, the REML estimator of ψ has been widely used as the solution of the
equations:

( y − X̂β
G
)��−1�(a)�

−1( y − X̂β
G
)−tr (P�(a)) = 0, a = 1, . . . , k,

where P = �−1 − �−1X(X��−1X)−1X��−1. An essential property of the above
estimating equations is that they are exactly unbiased. Moreover, a key observation
for the equations is that the unbiasedness property is still valid without the normality,
and it only requires the moment assumptions. In this work, we generalize the REML
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method for estimating the variance components ψ , that is, we consider the general
class of unbiased estimating equations and develop a unified asymptotic theory for the
resulting estimator of ψ .

2.2 General estimating equations for variance parameters

Let̂β = L y be a linear unbiased estimator of β, where L = L(ψ) is a p × N matrix
of functions of ψ and satisfies LX = I . Let Wa = Wa(ψ) be an N × N matrix
of functions of ψ for a = 1, . . . , k. The expectation E{( y − X̂β)�Wa( y − X̂β)} is
tr (Q�Wa Q�) for Q = I − XL, which gives the general estimating equations:

y� Q�Wa Q y − tr (Q�Wa Q�) = 0, a = 1, . . . , k. (1)

For example, the choice of Wa = �−1�(a)�
−1 leads to the REML estimation, and

other choices of Wa lead to different estimators of ψ . In the following theorem,
we provide the second-order bias and asymptotic covariance matrix of the general
estimator ̂ψ as the solution of (1). Define k × k matrices A, B and ˜B by

(A)ab = tr (Wa�(b)), (B)ab = tr (Wa�Wb�),

(˜B)ab = Kehe(Wa,Wb) + Kvhv(Wa,Wb), (2)

where for matrices C and D,

he(C, D) =
N

∑

i=1

(R1/2
e CR1/2

e )i i · (R1/2
e DR1/2

e )i i ,

hv(C, D) =
m

∑

i=1

(R1/2
v Z�CZR1/2

v )i i · (R1/2
v Z�DZR1/2

v )i i .

Theorem 2.1 Assume that (LX�WaXL)i j = O(N−1), L�L� = O(N−1), and
(XL)i j = O(N−1) as N → ∞. Then, Cov (̂ψ) = 2A−1BA−1 + A−1

˜BA−1 +
O(N−3/2) and

E(̂ψ − ψ) = 2A−1cola(Ka A−1 − Ha A−1BA−1)

+ A−1cola(˜Ka A−1 − Ha A−1
˜BA−1) + O(N−3/2), (3)

where cola(xa) = (x1, . . . , xk)� is a column vector with the a-th element xa, and the
k × k matrices K , H and ˜K are defined by

(Ka)bc = tr (Wa(b)�W c�),

(Ha)bc = tr (Wa(b)�(c)) + 2−1tr (Wa�(bc)),

(˜Ka)bc = Kehe(Wa(b),W c) + Kvhv(Wa(b),W c).
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Two typical choices of L are LG = (X��−1X)−1X��−1 and LO =
(X�X)−1X�, which correspond to the GLS estimator̂β

G
and ordinary least squares

(OLS) estimator ̂β
O
. However, Theorem 2.1 tells us that the second-order bias and

the asymptotic covariance matrix do not depend on such a choice of L. This is an
essential observation from Theorem 2.1, and the specific form of ̂β in the estimating
equation (1) is irrelevant to the asymptotic properties of ̂ψ as long as ̂β is unbiased.
Hence, it would be better to use a simpler form of ̂β, so in what follows, we employ
L = (X�X)−1X�, corresponding to the ordinary least squares estimators of β. On
the other hand, the choice of Wa affects the asymptotic properties.

The second-order unbiasedness is one of the desirable properties of estimators ̂ψ .
From Theorem 2.1, we need to use Wa such that the leading term in (3) is 0 to
achieve second-order unbiasedness of ̂ψ . In typical linear mixed models such as the
Fay–Herriot and nested error regression models, the covariance matrix � is a linear
function of ψ . In this case, �(bc) = 0, which simplifies the condition for the second-
order unbiasedness in (3), because (Ha)bc = tr (Wa(b)�(c)). When Ke = Kv = 0,
the estimator ̂ψ is second-order unbiased if

Ka = Ha A−1B. (4)

This condition is investigated in the next section for some specific choices of Wa .

3 Specific estimators and their asymptotic properties

3.1 Three estimators

We now describe some specific estimators ofψ and provide their asymptotic variances
and biases. In what follows, we assume that � is a linear function of ψ , which are
satisfied in typical linearmixedmodels such as the Fay–Herriot and nested error regres-
sion models. We here consider the three candidates for Wa ; WRE

a = �−1�(a)�
−1,

WFH
a = (�−1�(a) + �(a)�

−1)/2 and WQ
a = �(a), which are motivated from the

REML estimator, the Fay–Herriot moment estimator (Fay & Herriot, 1979) and the
Prasad–Rao unbiased estimator (Prasad & Rao, 1990) under the Fay–Herriot model.
The estimators induced from WRE

a , WFH
a and WQ

a are called here the REML-type,
FH-type and PR-type estimators, respectively. From Theorem 2.1, we can derive
the asymptotic properties of the three estimators. When � is a linear function of
ψ , the asymptotic variances and second-order biases are simplified in the case of
Ke = Kv = 0, which is satisfied in the normal distributions.

Proposition 3.1 Assume the conditions in Theorem 2.1 and that � is a linear function

of ψ . Also assume that Ke = Kv = 0. Let ̂ψ
RE

, ̂ψ
FH

and ̂ψ
Q
be the estimators based

on WRE
a , WFH

a and WQ
a , respectively. Then the following results hold.

(a) REML-type estimator ̂ψ
RE

is second-order unbiased and has the asymptotic
covariance matrix 2A−1

RE, where (ARE)i j = tr (�−1�(i)�
−1�( j)).
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(b) FH-type estimator ̂ψ
FH

is not second-order unbiased. The asymptotic covariance
matrix is

2A−1
FHBFHA−1

FH,

for (AFH)i j = tr (�−1�(i)�( j)) and (BFH)i j = {tr (�(i)�( j))

+ tr (�−1�(i)��( j))}/2. The second-order bias is

2A−1
FHcola(Ka A

−1
FH − Ha A

−1
FHBFHA−1

FH),

for (Ka)bc = −tr {�(a)(�b) + ��(b)�
−1)�(c)�

−1}/2 and
(Ha)bc = −tr {�a)�(b)�

−1)�(c)�
−1.

(c) PR-type estimator ̂ψ
Q
is second-order unbiased and has the asymptotic covari-

ance matrix 2A−1
Q BQA

−1
Q , where (AQ)i j = tr (�(i)�( j)) and (BQ)i j =

tr (�(i)��( j)�).

In Proposition 3.1, the linearity of �(ψ) on ψ is only used to compute the second-
order bias. The expressions for the asymptotic covariances hold, in general, without

such constraints. Without assuming Ke = Kv = 0, the estimator ̂ψ
RE

has the second-

order bias, while ̂ψ
Q
remains second-order unbiased.

It is noted that the REML-type is the most efficient in the normal distributions,
which corresponds to the case of Ke = Kv = 0. This implies that the following
inequality holds for any Wa :

[mata,b{tr (Wa�(b))}]−1mata,b{tr (Wa�Wb�)}[mata,b{tr (Wa�(b))}]−1

≥ [mata,b{tr (�−1�(a)�
−1�(b))}]−1, (5)

wherematab{xab} is a k× k matrix with the (a, b)-th element xab. However, it should
be remarked that REML is not necessarily efficient without assuming Ke = 0 and
Kv = 0.

3.2 Detailed properties under two useful models

We provide more detailed formulas for the asymptotic covariances (or variances) and
second-order biases under the Fay–Herriot and nested error regression models.

The firstmodel is the Fay–Herriotmodel, which corresponds to y = (y1, . . . , ym)�,
N = m, Rv = ψ1 Im , Re = D = diag (D1, . . . , Dm) and � = ψ1 Im + D for known
Di ’s. The following proposition can be derived from Theorem 2.1.

Proposition 3.2 In the Fay–Herriot model, estimator ̂ψ1 is the solution of (1) for
diagonal matrix W1. Without assuming Ke = Kv = 0, the asymptotic variance of ̂ψ1
is

Var(̂ψ1) ≈ 2
tr (W1�W1�)

{tr (W1)}2 + Ketr (W2
1D

2) + ψ2
1 Kvtr (W2

1)

{tr (W1)}2 ,
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and the second-order bias is

Bias(̂ψ1) ≈ 2
tr (W1(1)�W1�) − tr (W1(1))tr (W1�W1�)

{tr (W1)}2

+ Ketr (W1(1)W1D2) + ψ2
1 Kvtr (W1(1)W1)

{tr (W1)}2

− tr (W1(1)){Ketr (W2
1D

2) + ψ2
1 Kvtr (W2

1)}
{tr (W1)}3 .

In this model, the inequality (5) is expressed as

tr (W1�W1�)

{tr (W1)}2 ≥ 1

tr (�−2)
,

or tr (W1�W1�)tr (�−2) ≥ {tr (W1)}2. This inequality can be directly proved by
using the Cauchy–Schwarz inequality.

The second example is the nested error regression model. Let
Z = block diag( jn1 , . . . , jnm ) for jni = (1, . . . , 1)� ∈ R

ni , and let G =
block diag(Jn1 , . . . , Jnm ) for Jni = jni j

�
ni . This model corresponds to N =

∑m
i=1 ni , Rv = ψ1G, Re = ψ2 IN and � = ψ1G + ψ2 IN . Note that �(1) = G

and �(2) = IN . Then,

A =
(

tr (W1G) tr (W1)

tr (W2G) tr (W2)

)

, B =
(

tr (W1�W1�) tr (W1�W2�)

tr (W1�W2�) tr (W2�W2�)

)

,

and (˜B)ab = ψ2
2 Ke

∑N
i=1(Wa)i i (Wb)i i +ψ2

1 Kv

∑m
i=1(Z

�WaZ)i i (Z�WbZ)i i . The
following proposition is provided from Theorem 2.1.

Proposition 3.3 In the nested error regression model, estimator ̂ψ is the solution of
(1).Without assuming Ke = Kv = 0, the asymptotic covariance matrix of ̂ψ is

Cov (̂ψ) ≈ 2A−1BA−1 + A−1
˜BA−1, (6)

and the second-order bias of ̂ψ is

Bias(̂ψ)

≈ 2A−1
(

tr (K 1A−1) − tr (H1A−1BA−1)

tr (K 2A−1) − tr (H2A−1BA−1)

)

+ A−1
(

tr (˜K 1A−1) − tr (H1A−1
˜BA−1)

tr (˜K 2A−1) − tr (H2A−1
˜BA−1)

)

,

(7)

where (Ka)bc = tr (Wa(b)�W c�), (Ha)bc = tr (Wa(b)�(c)) and (˜Ka)bc =
ψ2
2 Ke

∑N
i=1(Wa(b))i i (W c)i i + ψ2

1 Kv

∑m
i=1(Z

�Wa(b)Z)i i (Z�W cZ)i i for a = 1, 2.
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4 Simulation studies

We here investigate the finite-sample performance of some estimators obtained from
the estimating equation (1) in the two typical linear mixed models, the Fay–Herriot
model and the nested error regression model. As distributions of the random effects
and the error terms in the both models, we treat the normal distribution and the t-
distribution with 6 degrees of freedom.

We first consider the Fay–Herriot model studied in Fay and Herriot (1979) as a
simple area-level linear mixed model, which is described as yi = x�

i β + vi + εi for
i = 1, . . . ,m. There are five groups G1, . . . ,G5 and six small areas in each group,
that is, we have m = 5 × 6 = 30. The sampling variances Di ’s are the same for
area within the same group, and we consider the Di -pattern (1.4, 1.2, 1.0, 0.8, 0.6).
For p = 3, we set β = j p and construct xi as xi = Aui and fix it, where A is the
Cholesky decomposition of 0.8I p +0.2J p and ui is a p-variate value generated from
Np(0, I p) for i = 1, . . . ,m. In this model, � = ψ1 Im + D. Since the average of
Di ’s is 1.0, we consider the three cases of ψ1 = 0.2, 1 and 5.

The estimators which we compare are the ML estimator, the REML estimator, the
REML-type estimator based onOLS of β, the Fay–Herriot estimator, the Fay–Herriot-
type estimator based on OLS of β, the bias-corrected Fay–Herriot estimator and the
Prasad–Rao estimator, which are denoted by ML, RE, ORE, FH, OFH, UFH and PR,
respectively. Note that the Prasad–Rao estimator is identical to the second-order unbi-
ased estimator constructed fromWQ

a in thismodel under normality. The detailed forms
of estimators are provided in theAppendix. In particular, the solutions of the estimating
equations are computed by the solver of non-linear equations in Ox (Doornik, 2007).
The values of their biases (Bias), standard deviations (SD) and square roots of mean
squared errors (RMSE) are calculated by simulation with 10,000 replications. Those
values are reported in Table 1 when the standard normal distributions are assumed for
vi/

√
ψ1 and εi/

√
Di , and in Table 2 when we assume tν/

√
ν/(ν − 2) instead of the

normality, where tν is a random variable having the t-distribution with ν degrees of
freedom. We here set ν = 6.

The REML estimator is a bias-corrected procedure of ML up to second order under
the normality. We can confirm this fact, because RE has a smaller bias than ML in
Table 1. On the other hand, RE has a larger SD, which turns into a larger RMSE
than ML. Although UFH is a bias-corrected procedure of FH up to second order,
there are little difference in bias, SD and RMSE between FH and UFH. It is also
revealed from Table 1 that RE and FH have similar performances to ORE and OFH,
respectively. This supports the results of Theorem 2.1, namely, the second-order bias
and the asymptotic covariance matrix do not depend on whether β is estimated by
the GLS or OLS estimators of β. In light of values of RMSE, ML	(RE, ORE)	(FH,
OFH, UFH)	PR for all the cases of ψ1, where ML	RE means that ML is better than
RE.

As a non-normal distribution, we treat the t-distribution with 6 degrees of freedom,
and the simulation results are reported in Table 2. Comparing Tables 1 and 2, the
values of SD and RMSE under the t-distributions are larger than those under the
normality. However, relative performances of the estimators under the t-distributions
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Table 1 Values of bias, standard deviation (SD) and square-root of MSE for the seven estimators of ψ1 in
the Fay–Herriot model under normality

ML RE ORE FH OFH UFH PR

ψ1 = 0.2

Bias −0.0498 0.0383 0.0387 0.0427 0.0427 0.0395 0.0485

SD 0.2003 0.2543 0.2548 0.2609 0.2610 0.2603 0.2740

RMSE 0.2064 0.2572 0.2577 0.2644 0.2645 0.2633 0.2783

ψ1=1

Bias −0.1966 −0.0021 −0.0022 −0.0002 −0.0002 −0.0031 −0.0031

SD 0.4694 0.5255 0.5255 0.5286 0.5286 0.5293 0.5413

RMSE 0.5089 0.5255 0.5255 0.5286 0.5286 0.5293 0.5413

ψ1=5

Bias −0.5765 0.0200 0.0199 0.0220 0.0220 0.0210 0.0221

SD 1.4755 1.6398 1.6398 1.6420 1.6420 1.6423 1.6478

RMSE 1.5841 1.6399 1.6400 1.6422 1.6422 1.6424 1.6480

Table 2 Values of bias, standard deviation (SD) and square-root of MSE for the seven estimators of ψ1 in
the Fay–Herriot model under t-distributions

ML RE ORE FH OFH UFH PR

ψ1 = 0.2

Bias −0.0128 0.0705 0.0718 0.0729 0.0729 0.0702 0.0788

SD 0.3078 0.3711 0.3717 0.3824 0.3824 0.3819 0.3990

RMSE 0.3080 0.3778 0.3786 0.3893 0.3893 0.3883 0.4067

ψ1=1

Bias −0.1868 0.0012 0.0010 0.0037 0.0037 0.0008 0.0008

SD 0.6101 0.6837 0.6839 0.6888 0.6888 0.6895 0.70203

RMSE 0.6381 0.6837 0.6839 0.6888 0.6888 0.6895 0.7020

ψ1=5

Bias −0.6299 −0.0259 −0.0258 −0.0252 −0.0252 −0.0262 −0.0270

SD 1.9817 2.2017 2.2017 2.2009 2.2009 2.2012 2.2036

RMSE 2.0795 2.2019 2.2018 2.2011 2.2011 2.2014 2.2038

are quite similar to the performances under the normality. Under the t-distributions,
RE and UFH are not second-order unbiased, and the bias of ML is smaller than RE
for ψ1 = 0.2, while RE has smaller biases for ψ1 = 1, 5.

We next consider the nested error regression model studied in Battese et al. (1988)
as a unit-level random intercept model, which is described as yi j = x�

i jβ + vi + εi j
for i = 1, . . . ,m and j = 1, . . . , ni with E(vi ) = 0, Var(vi ) = ψ1, E(εi j ) = 0,
Var(εi j ) = ψ2. We set up β and xi j as in the Fay–Herriot model for p = 3. The
number of clusters is m = 20, and 20 clusters are equally divided into five groups,
and the sample sizes ni are the same for clusters within the same group. We consider
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the ni -pattern (4, 4, 5, 6, 6), so that the total sample size is N = 100. As estimators of
the two variance components ψ1 and ψ2, we investigate the ML estimator, the REML
estimator, the REML estimator based on OLS of β, the Fay–Herriot estimator, the
Prasad–Rao estimator and the PR-type second-order unbiased estimator constructed
from WQ

a , which are denoted by ML, RE, ORE, FH, PR and Q, respectively. The
detailed forms of estimators are provided in the Appendix. The values of their biases
(Bias), standard deviations (SD) and square roots of mean squared errors (RMSE)
are calculated by simulation with 1000 replications for ψ1 = 0.2, 1, 5 and ψ2 = 5.
Those values are reported in Table 3 under the normality and in Table 4 under the
t-distribution with ν degrees of freedom for ν = 6, where the first three columns are
for estimation of ψ1 and the second three columns are for estimation of ψ2. Since the
variance of the sample mean n−1

i

∑ni
j=1 yi j is ψ2/ni , the average of the variances is

m−1 ∑m
i=1 ψ2/ni , which is close to one for the above ni -pattern and ψ2 = 5. This

suggests that our setup of ψ1 and ψ2 is close to the setup in the Fay–Herriot model.
The overall features of the estimators in Tables 3 and 4 are similar to those in

Tables 1 and 2, that is, RE has smaller biases, but larger SD than ML, and the values
of SD and RMSE in the non-normal distributions are larger than those under the
normality. Although RE and ORE have similar performances, ORE has smaller values
forψ1 = 0.2, but larger values forψ1 = 5. Since PR andQ are second-order unbiased,
their biases are small. However, their SD andRMSE are large and give theworst values
in estimation of ψ2 at ψ1 = 5. In light of RMSE, the ML, RE and FH estimators are
recommendable.
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Appendix A: Proofs

A.1 A preliminary lemma

For the proof, we use the following lemma:

Lemma A.1 Let u = ε + Zv. Then, for matrices C and D, it holds that

E[u�Cuu�Du] = 2tr (C�D�) + tr (C�)tr (D�) + Kehe(C, D) + Kvhv(C, D),

(8)
where he(C, D) and hv(C, D) are given in Theorem 2.1.

Proof It is demonstrated that E[u�Cuu�Du] = E[ε�Cεε�Dε]
+ E[v�Z�CZvv�Z�DZv] + tr (CRe)tr (DZRvZ�) + tr (DRe)tr (CZRvZ�) +
4tr (CReDZRvZ�). Let x = (x1, . . . , xN )� = R−1/2

e ε, ˜C = R1/2
e CR1/2

e and
˜D = R1/2

e DR1/2
e . Then, E[x] = 0, E[xx�] = IN , E[x4a ] = Ke + 3, a = 1, . . . , N ,

and E[ε�Cεε�Dε] = E[x�
˜Cxx�

˜Dx]. Let δa=b=c=d = 1 for a = b = c = d, and
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Table 3 Values of bias, standard deviation (SD) and square-root of MSE for the six estimators of ψ1 and
ψ2 in the nested error regression model under normality

ML RE ORE FH PR Q

Estimation of ψ1 for ψ1 = 0.2, ψ2 = 5

Bias 0.0903 0.0891 0.0856 0.0796 0.0790 −0.0011

SD 0.3413 0.3405 0.3342 0.3393 0.3387 0.4359

RMSE 0.3530 0.3520 0.3450 0.3485 0.3478 0.4359

Estimation of ψ1 for ψ1 = 1, ψ2 = 5

Bias −0.0108 −0.0119 −0.0101 −0.0131 0.0672 −0.0266

SD 0.6565 0.6557 0.6680 0.6576 0.7515 0.8037

RMSE 0.6566 0.6558 0.6681 0.6577 0.7545 0.8041

Estimation of ψ1 for ψ1 = 5, ψ2 = 5

Bias −0.0755 −0.0782 −0.0730 −0.0766 −0.0057 −0.1044

SD 1.9456 1.9452 2.0324 1.9635 2.1691 2.1078

RMSE 1.9471 1.9468 2.0338 1.9650 2.1691 2.1104

Estimation of ψ2 for ψ1 = 0.2, ψ2 = 5

Bias −0.2477 −0.0946 0.0412 −0.0194 −0.0881 −0.0079

SD 0.7714 0.7928 0.7823 0.8353 0.7955 0.8453

RMSE 0.8102 0.7985 0.7834 0.8355 0.8003 0.8454

Estimation of ψ2 for ψ1 = 1, ψ2 = 5

Bias −0.1732 −0.0084 0.2696 0.0025 −0.0984 −0.0045

SD 0.7712 0.7943 0.8106 0.8080 1.1290 1.1687

RMSE 0.7904 0.7943 0.85427 0.8080 1.1333 1.1688

Estimation of ψ2 for ψ1 = 5, ψ2 = 5

Bias −0.1701 0.0097 0.3756 0.0123 −0.0934 0.0051

SD 0.7505 0.7772 0.8446 0.7803 1.4337 1.4034

RMSE 0.7695 0.7772 0.9244 0.7804 1.4368 1.4034

otherwise, δa=b=c=d = 0. The notation δa=b 
=c=d is defined similarly. It is observed
that for a, b, c, d = 1, . . . , N ,

E[xa(˜C)abxbxc(˜D)cd xd ]
= E[x4a (˜C)aa(˜D)aaδa=b=c=d + x2a x

2
c (

˜C)aa(˜D)ccδa=b 
=c=d + 2x2a x
2
b (

˜C)ab(˜D)abδa=c 
=b=d ]
= (Ke + 3)(˜C)aa(˜D)aaδa=b=c=d + (˜C)aa(˜D)ccδa=b 
=c=d + 2(˜C)ab(˜D)abδa=c 
=b=d

= Ke(˜C)aa(˜D)aaδa=b=c=d + (˜C)aa(˜D)ccδa=bδc=d + 2(˜C)ab(˜D)abδa=cδb=d ,

which implies that

∑

a,b,c,d

E[xa(˜C)abxbxc(˜D)cd xd ] = Ke

N
∑

a=1

(˜C)aa(˜D)aa +
N

∑

a=1

(˜C)aa

N
∑

c=1

(˜D)cc
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Table 4 Values of bias, standard deviation (SD) and square-root of MSE for the six estimators of ψ1 and
ψ2 in the nested error regression model under t-distributions

ML RE ORE FH PR Q

Estimation of ψ1 for ψ1 = 0.2, ψ2 = 5

Bias 0.0988 0.0973 0.0920 0.0877 0.0860 0.0062

SD 0.3296 0.3288 0.3234 0.3287 0.3278 0.4363

RMSE 0.3441 0.3429 0.3363 0.3402 0.3389 0.4363

Estimation of ψ1 for ψ1 = 1, ψ2 = 5

Bias 0.0429 0.0419 0.0478 0.0412 0.1323 0.0368

SD 0.7700 0.7694 0.8083 0.7847 0.8688 0.9042

RMSE 0.7712 0.7705 0.8097 0.7857 0.8788 0.9049

Estimation of ψ1 for ψ1 = 5, ψ2 = 5

Bias 0.0557 0.0528 0.0308 0.0345 0.1630 0.0828

SD 2.9158 2.9156 2.9072 2.8519 3.0328 2.9880

RMSE 2.9164 2.9161 2.9074 2.8521 3.0372 2.9891

Estimation of ψ2 for ψ1 = 0.2, ψ2 = 5

Bias −0.2474 −0.0942 0.0502 −0.0170 −0.0852 −0.0054

SD 1.0553 1.0856 1.0905 1.1317 1.0868 1.1506

RMSE 1.0840 1.0897 1.0916 1.1318 1.0901 1.1506

Estimation of ψ2 for ψ1 = 1, ψ2 = 5

Bias −0.1779 −0.0131 0.2643 −0.0048 −0.1038 −0.0083

SD 1.1481 1.1839 1.2174 1.1917 1.6101 1.6592

RMSE 1.1618 1.1840 1.2458 1.1917 1.6134 1.6592

Estimation of ψ2 for ψ1 = 5, ψ2 = 5

Bias −0.1840 −0.0050 0.3663 0.0036 −0.0948 −0.0146

SD 1.0967 1.1358 1.2315 1.1414 2.0755 2.0095

RMSE 1.1120 1.1358 1.2849 1.1414 2.0777 2.0095

+2
N

∑

a=1

N
∑

b=1

(˜C)ab(˜D)ab,

or

E[ε�Cεε�Dε] = 2tr (CReDRe) + tr (CRe)tr (DRe) + Kehe(C, D).

Similarly,

E[v�Z�CZvv�Z�DZv]
= 2tr (CZRvZ�DZRvZ�) + tr (CZRvZ�)tr (DZRvZ�) + Kvhv(C, D).

123



Japanese Journal of Statistics and Data Science (2021) 4:841–859 853

Thus, we have

E[u�Cuu�Du] = 2tr (CReDRe) + tr (CRe)tr (DRe) + 2tr (CZRvZ�DZRvZ�)

+ tr (CZRvZ�)tr (DZRvZ�) + tr (CRe)tr (DZRvZ�)

+ tr (DRe)tr (CZRvZ�) + 4tr (CReDZRvZ�)

+ Kehe(C, D) + Kvhv(C, D),

which can be rewritten as the expression in (9) for � = Re + ZRvZ�. ��

A.2 Proof of Theorem 2.1

For a = 1, . . . , k, let �a = y�Ca y − tr (Da) for Ca = Q�Wa Q and Da =
Q�Wa Q�. For u = y − Xβ = ε + Zv, �a is rewritten as �a = u�Cau − tr (Da).
By the Taylor series expansion,

0 = cola(�a) + matab(�a(b))(̂ψ − ψ)

+1

2
cola

{

k
∑

b=1

k
∑

c=1

�a(bc)(̂ψb − ψb)(̂ψc − ψc)

}

+ Op(N
−1/2),

where matab(xab) is a k × k matrix with the (a, b)-th element xab. Then,

̂ψ − ψ = −{matab(�a(b))}−1

[

cola(�a) + 1

2
cola

{

k
∑

b=1

k
∑

c=1

�a(bc)(̂ψb − ψb)(̂ψc − ψc)

}]

+Op(N
−3/2).

Since tr (�Ca) = tr (Da), we have �a = tr {Ca(uu� − �)}. In addition,
�a(b) = tr (�Ca(b) − Da(b)) + tr {Ca(b)(uu� − �)} and �a(bc) = tr (�Ca(bc) −
Da(bc)) + tr {Ca(bc)(uu� − �)}. Let A1 = matab{tr (�Ca(b) − Da(b))} and A0 =
matab[tr {Ca(b)(uu� − �)}]. It is noted that A1 = O(N ), A0 = Op(N 1/2),
tr (�Ca(bc) − Da(bc)) = O(N ) and tr {Ca(bc)(uu� − �)} = Op(N 1/2). Then it
can be seen that

{matab(�a(b))}−1 = (A1 + A0)
−1 = A−1

1 − A−1
1 A0A

−1
1 + Op(N

−2),

so that

̂ψ − ψ = − A−1
1 cola[tr {Ca(uu� − �)}] + A−1

1 A0A
−1
1 cola[tr {Ca(uu� − �)}]

− 1

2
A−1
1 cola

{

k
∑

b=1

k
∑

c=1

tr (�Ca(bc) − Da(bc))(̂ψb − ψb)(̂ψc − ψc)

}

+ Op(N
−3/2).

It is noted that (Ca)i j = (Q�Wa Q)i j = (Wa)i j +O(N−1), (Ca(b))i j = (Wa(b))i j +
O(N−1) and (Ca(bc))i j = (Wa(bc))i j+O(N−1). Then, tr (Ca�) = tr (Wa�)+O(1),
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tr (Ca(b)�) = tr (Wa(b)�) + O(1) and tr (Ca(bc)�) = tr (Wa(bc)�) + O(1). Since
Da = Ca�, Da(b) = Ca(b)� + Ca�(b) and Da(bc) = Ca(bc)� + Ca(b)�(c) +
Ca(c)�(b)+Ca�(bc), it is seen that tr (Da(b)) = tr (Wa(b)�)+tr (Wa�(b))+O(1) and
tr (Da(bc)) = tr (Wa(bc)�)+ tr (Wa(b)�(c))+ tr (Wa(c)�(b))+ tr (Wa�(bc))+O(1).
Thus,

tr (�Ca(b) − Da(b)) = −tr (Wa�(b)) + O(1),

tr (�Ca(bc) − Da(bc)) = −tr (Wa(b)�(c)) − tr (Wa(c)�(b)) − tr (Wa�(bc)) + O(1).(9)

Letting A = matab{tr (Wa�(b))}, we have A1 = −A + O(1). Using Lemma A.1,
we can approximate the covariance matrix of ̂ψ as

E[(̂ψ − ψ)(̂ψ − ψ)�] = A−1
1 matab(E[tr {Ca(uu� − �)}tr {Cb(uu� − �)}])A−1

1 + O(N−3/2)

= 2A−1BA−1 + A−1
˜BA−1 + O(N−3/2),

for B = matab{tr (Wa�Wb�)} and˜B = matab{Kehe(Wa,Wb)+Kvhv(Wa,Wb)}.
The bias of ̂ψ is

E(̂ψ − ψ) = −1

2
A−1cola

[

k
∑

b=1

k
∑

c=1

{2tr (Wa(b)�(c)) + tr (Wa�(bc))}(A−1(2B + ˜B)A−1)bc

]

+ E(A−1A0A−1cola[tr {Ca(uu� − �)}]) + O(N−3/2).

Concerning the second term inRHS, the a-th element of E{(A0A−1colc[tr {Cc(uu�−
�)}])} is

E{(A0A−1colc[tr {Cc(uu� − �)}])a}

=
k

∑

b=1

k
∑

c=1

E[tr {Ca(b)(uu� − �)}(A)bctr {Cc(uu� − �)}]

=
k

∑

b=1

k
∑

c=1

{2tr (Wa(b)�W c�) + Kehe(Wa(b),W c) + Kvhv(Wa(b),W c)}(A)bc + O(N−1).

Then,

E(̂ψ − ψ)

= A−1cola

(

k
∑

b=1

k
∑

c=1

{2tr (Wa(b)�W c�) + Kehe(Wa(b),W c) + Kvhv(Wa(b),W c)}(A)bc

)

− 1

2
A−1cola

[

k
∑

b=1

k
∑

c=1

{2tr (Wa(b)�(c)) + tr (Wa�(bc))}(A−1(2B + ˜B)A−1)bc

]

+ O(N−3/2),

which provides the expression in (3) in Theorem 2.1.
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A.3 Proof of Proposition 3.1

Case of Wa = �−1�(a)�
−1. We have Wa(b) = −�−1�(b)�

−1�(a)�
−1 −

�−1�(a)�
−1�(b)�

−1 + �−1�(ab)�
−1, which yields that tr (Wa�(b)) =

tr (�−1�(a)�
−1�(b)) = (A)ab and (B)ab = tr (Wa�Wb�) = tr (�−1�(a)�

−1�(b)) =
(A)ab. Thus, A−1BA−1 = A−1 and the covariance matrix of ̂ψ is 2A−1+O(N−3/2).
Moreover, note that

(K a)bc =tr (Wa(b)�W c�) = −2tr (�−1�(a)�
−1�(b)�

−1�(c)) + tr (�−1�(ab)�
−1�(c)),

(Ha)bc =tr (Wa(b)�(c)) = −2tr (�−1�(a)�
−1�(b)�

−1�(c)) + tr (�−1�(ab)�
−1�(c)),

which shows that WREML
a satisfies (4).

Case of Wa = (�−1�(a) + �(a)�
−1)/2. From (2), it follows that (A)ab =

tr (�−1�(a)�(b)) and (B)ab = {tr (�(a)�(b)) + tr (�−1�(a)��(b))}/2. The asymp-
totic covariance matrix of ̂ψ is 2A−1BA−1, and the bias is derived from (3).

Case ofWa = �(a). Straightforward calculation shows that (A)ab = tr (�(a)�(b))

and (B)ab = tr (�(a)��(b)�). The asymptotic covariancematrix of̂ψ is 2A−1BA−1+
O(N−3/2). Moreover, since Wa(b) = 0, the condition (4) holds.

Appendix B: Summary of estimationmethods in specific models

Here, we provide specific forms of the REML-type, FH-type, and their OLS-based
estimators, the PR-type estimator and the Prasad–Rao estimator in the Fay–Herriot
model and the nested error regression model.

B.1 Fay–Herriot model

The marginal distribution of y = (y1, . . . , ym)� in the Fay–Herriot model has
E[ y] = Xβ and Cov ( y) = � = ψ1 Im + D, where p is a dimension of β and
D = diag (D1, . . . , Dm).

REML ̂ψRE
1 corresponds to WRE

1 = �−2 and̂β = ̂β
G
and the estimating equation

is ( y−X̂β
G
)��−2( y−X̂β

G
) = tr (P) for P = �−1−�−1X(X��−1X)−1X��−1.

OLS-based REML ̂ψORM
1 corresponds to WRE

1 = �−2 and ̂β = ̂β
O

and the

estimating equation is ( y − X̂β
O
)��−2( y − X̂β

O
) = tr (˜P�−2

˜P�) for ˜P = I −
X(X�X)−1X�.

Fay–Herriot estimator ̂ψFH
1 corresponds to WFH

1 = �−1 and ̂β = ̂β
G
and the

estimating equation is ( y − X̂β
G
)��−1( y − X̂β

G
) = m − p.

OLS-based FH estimator ̂ψOFH
1 corresponds to WFH

1 = �−1 and ̂β = ̂β
O

and the estimating equation is ( y − X̂β
O
)��−1( y − X̂β

O
) = m − 2p +

tr {(X�X)−1X��X(X�X)−1X��−1X}.
Prasad–Rao estimator ̂ψPR

1 corresponds to WQ
1 = I and̂β = ̂β

O
and it is given by

̂ψPR
1 = [ y�

˜P y − tr (D) + tr {(X�X)−1X�DX}]/(m − p).
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The asymptotic variances and second-order biases can be provided from Propo-
sition 3.2 as follows: REML ̂ψRE

1 and OLS-based REML ̂ψORM
1 have the same

asymptotic variance and the second-order bias

Var(̂ψRE
1 ) ≈ 2

tr (�−2)
+ Ketr (�−4D2) + ψ2

1 Kvtr (�−4)

{tr (�−2)}2 ,

Bias(̂ψRE
1 ) ≈ −2

Ketr (�−5D2) + ψ2
1 Kvtr (�−5)

{tr (�−2)}2

+ 2
tr (�−3){Ketr (�−4D2) + ψ2

1 Kvtr (�−4)}
{tr (�−2)}3 .

Fay–Herriot estimator ̂ψFH
1 and OLS-based FH estimator ̂ψOFH

1 have the same asymp-
totic variance and the second-order bias

Var(̂ψFH
1 ) ≈ 2m

{tr (�−1)}2 + Ketr (�−2D2) + ψ2
1 Kv tr (�−2)

{tr (�−1)}2 ,

Bias(̂ψFH
1 ) ≈ 2

mtr (�−2) − {tr (�−1)}2
{tr (�−1)}3

− Ketr (�−3D2) + ψ2
1 Kv tr (�−3)

{tr (�−1)}2 + tr (�−2){Ketr (�−2D2) + ψ2
1 Kv tr (�−2)}

{tr (�−1)}3 ,

which implies that ̂ψUFH
1 = ̂ψFH

1 −2[mtr (̂�
−2

)−{tr (̂�−1
)}2]/{tr (̂�−1

)}3 is unbiased
up to second order under normality, where ̂� = ̂ψFH

1 Im + D.
Prasad–Rao estimator ̂ψPR

1 is second-order unbiased and has the asymptotic vari-
ance Var(̂ψPR

1 ) ≈ {2tr (�2) + Ketr (D2) + mψ2
1 Kv}/m2.

B.2 Nested error regressionmodel

The NER model is written as yi = X iβ + jni vi + εi for i = 1, . . . ,m, where yi , β
and εi are ni , p and ni dimensional vectors, X i is an ni × p matrix, vi is scalar and
jni = (1, . . . , 1)� ∈ R

ni . Here, vi and εi are independent random variables such that
E[vi ] = 0, Var(vi ) = ψ1, E[εi ] = 0 andCov (εi ) = ψ2 Ini . Let y = ( y�

1 , . . . , y�
m)�,

X = (X�
1 , . . . , X�

m)�, N = ∑m
i=1 ni and G = block diag(Jn1 , . . . , Jnm ) for Jni =

jni j
�
ni . In addition, let� = block diag(�1, . . . ,�m) for�i = ψ1 Jni +ψ2 Ini . Then,

� = ψ1G + ψ2 IN , �(1) = G and �(2) = IN .

REML ̂ψRE
1 and ̂ψRE

1 correspond toWRE
1 = �−1G�−1,WRE

2 = �−2 and̂β = ̂β
G
,

and the estimating equations are ( y − X̂β
G
)��−1G�−1( y − X̂β

G
) = tr (PG) and

( y − X̂β
G
)��−2( y − X̂β

G
) = tr (P).

OLS-based REML ̂ψORM
1 and ̂ψORM

2 correspond to WRE
1 = �−1G�−1, WRE

2 =
�−2 and ̂β = ̂β

O
, and the estimating equations are ( y − X̂β

O
)��−1G�−1( y −

X̂β
O
) = tr (˜P�˜P�−1G�−1) and ( y − X̂β

O
)��−2( y − X̂β

O
) = tr (˜P�˜P�−2).
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FH-type estimators ̂ψFH
1 and ̂ψFH

2 correspond to WFH
1 = (�−1G + G�−1)/2,

WFH
2 = �−1 and̂β = ̂β

G
, and the estimating equations are

m
∑

i=1

n2i (yi − x�
i
̂β
G
)2

niψ1 + ψ2
= N −

m
∑

i=1

n2i x
�
i (X��−1X)−1xi
niψ1 + ψ2

,

ψ2 = 1

N − p

m
∑

i=1

ni
∑

j=1

(yi j − x�
i j
̂β
G
)2 − 1

N − p

m
∑

i=1

n2i ψ1

niψ1 + ψ2
(yi − x�

i
̂β
G
)2.

OLS-based FH estimators ̂ψOFH
1 and ̂ψOFH

2 correspond to WFH
1 = (�−1G +

G�−1)/2, WFH
2 = �−1 and̂β = ̂β

O
, and the estimating equations are

m
∑

i=1

n2i (yi − x�
i
̂β
O
)2

niψ1 + ψ2
= N − 2

m
∑

i=1

n2i x
�
i (X�X)−1xi

+
m

∑

i=1

n2i x
�
i (X�X)−1X��X(X�X)−1xi

niψ1 + ψ2
,

m
∑

i=1

ni
∑

j=1

(yi j − x�
i j
̂β
O
)2 −

m
∑

i=1

n2i ψ1

niψ1 + ψ2
(yi − x�

i
̂β
O
)2 = tr (˜P�˜P�−1).

PR-type estimators ̂ψ
Q
1 and ̂ψ

Q
2 correspond to WQ

1 = G, WQ
2 = I and ̂β = ̂β

O
,

and the estimators are ̂ψ
Q
1 = {∑m

i=1 n
2
i (yi − x�

i
̂β
O
)2 − ̂ψ2tr (˜PG)}/tr (˜PG)2 and

̂ψ
Q
2 =

∑m
i=1

∑ni
j=1(yi j − x�

i j
̂β
O
)2 − [tr (˜PG)/tr {(˜PG)2}] ∑m

i=1 n
2
i (yi − x�

i
̂β
O
)2

N − p − {tr (˜PG)}2tr {(˜PG)2} .

Prasad–Raoestimators arêψPR
1 = { y�

˜P y−(N−p)̂ψ2}/{N−∑m
i=1 n

2
i x

�
i (X�X)−1xi }

and ̂ψPR
2 = { y�{E − EX(X�EX)−1X�E} y}/(N − k − p), where E =

block diag(In1 − n−1
1 Jn1, . . . , Inm − n−1

m Jnm ).
Hereafter we assume that Ke = Kv = 0 for simplicity. Note that �G = G�,

ψ1G = � − ψ2 IN , ψ2�
−1 = IN − ψ1block diag(γ1 Jn1, . . . , γm Jnm ), ψ2

2�−2 =
IN − ψ1block diag((1 + ψ2γ1)γ1 Jn1 , . . . , (1 + ψ2γm)γm Jnm ) for γi = 1/(ψ2 +
niψ1). Then the asymptotic variances and second-order biases can be provided from

Proposition 3.3 as follows: REML ̂ψ
RE

and OLS-based REML ̂ψ
ORM

are second-
order unbiased and have the same asymptotic variance

Cov (̂ψ
RE

) ≈2

(

tr {(�−1G)2} tr (�−2G)

tr (�−2G) tr (�−2)

)−1

= 2

(
∑m

i=1 n
2
i γ

2
i

∑m
i=1 niγ

2
i

∑m
i=1 niγ

2
i (N − m)/ψ2

2 + ∑m
i=1 γ 2

i

)−1

,

which was given in Datta and Lahiri (2000).
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Fay–Herriot estimator ̂ψ
FH

and OLS-based FH estimator ̂ψ
OFH

have the same

asymptotic covariance matrix Cov (̂ψ
FH

) ≈ 2A−1
FHBFHA−1

FH, where

AFH =
(

tr (�−1G2) tr (�−1G)

tr (�−1G) tr (�−1)

)

=
(

∑m
i=1 n

2
i γi

∑m
i=1 niγi

∑m
i=1 niγi (N − m)/ψ2 + ∑m

i=1 γi

)

,

BFH =
(

tr (�−1G�G + G2) N
N N

)

=
(∑m

i=1 n
2
i N

N N

)

,

and the same second-order bias

Bias(̂ψ
FH

) ≈ 2A−1
FH

(

tr (K 1A
−1
FH) − tr (H1A

−1
FHBFHA−1

FH)

tr (K 2A
−1
FH) − tr (H2A

−1
FHBFHA−1

FH)

)

,

where

K 1 = −
(

tr (�−1G3) tr (�−1G2)

tr (�−1G2) tr (�−1G)

)

= −
(

∑

i n
3
i γi

∑

i n
2
i γi

∑

i n
2
i γi

∑

i niγi

)

,

K 2 = −
(

tr (�−1G2) tr (�−1G)

tr (�−1G) tr (�−1)

)

= −
(

∑

i n
2
i γi

∑

i niγi
∑

i niγi (N − m)/ψ2 + ∑

i γi

)

,

H1 = −
(

tr (�−1G�−1G2) tr (�−1G�−1G)

tr (�−2G2) tr (�−2G)

)

= −
(

∑

i n
3
i γ

2
i

∑

i n
2
i γ

2
i

∑

i n
2
i γ

2
i

∑

i niγ
2
i

)

,

H2 = −
(

tr (�−1G�−1G) tr (�−2G)

tr (�−2G) tr (�−2)

)

= −
(

∑

i n
2
i γ

2
i

∑

i niγ
2
i

∑

i niγ
2
i (N − m)/ψ2 + ∑

i γ
2
i

)

.

PR-type estimator ̂ψ
Q
is second-order unbiased and has the same asymptotic covari-

ance matrix Cov (̂ψ
Q
) ≈ 2A−1

Q BQA
−1
Q , where

AQ =
(

tr (G2) tr (G)

tr (G) tr (IN )

)

=
(∑m

i=1 n
2
i N

N N

)

,

BQ =
(

tr (�2G2) tr (�2G)

tr (�2G) tr (�2)

)

=
(

∑m
i=1 n

2
i /γ

2
i

∑m
i=1 ni/γ

2
i

∑m
i=1 ni/γ

2
i (N − m)ψ2

2 + ∑m
i=1 1/γ

2
i

)

.
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